2005
DOI: 10.1007/s10587-005-0010-4
|View full text |Cite
|
Sign up to set email alerts
|

Generalized first class selectors for upper semi-continuous set-valued maps in Banach spaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
2

Year Published

2008
2008
2009
2009

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 13 publications
0
2
0
2
Order By: Relevance
“…If a scattered function base for a map f can be constructed with sets which are differences of closed sets, then f enjoys properties which are close to measurability; in fact, it is Borel measurable when the domain space is, for instance, a complete metric space or a Gulko compact (see [24,23,22]). …”
mentioning
confidence: 99%
“…If a scattered function base for a map f can be constructed with sets which are differences of closed sets, then f enjoys properties which are close to measurability; in fact, it is Borel measurable when the domain space is, for instance, a complete metric space or a Gulko compact (see [24,23,22]). …”
mentioning
confidence: 99%
“…Let g ∈ M(X, Y ). It follows for example from [8] that g has a selection of the first Baire class, i.e., there is a (single-valued) function f : X → Y which is of the first Baire class (i.e., the pointwise limit of a sequence of continuous functions) such that f (x) ∈ g(x) for each x ∈ X.…”
Section: First We Note That C(x Y ) Is Not Always Dense In M(x Y )mentioning
confidence: 99%
“…En el presente capítulo aportamos tres resultados fundamentales sobre aplicaciones σ -fragmentables. En el teorema 3.1.7 relacionamos estas aplicaciones con límites de aplicaciones barely-continuas a trozos en la línea del teorema de Baire para funciones de la primera clase de Baire que tiene sus predecesores en M. Raja [73], R. Hansell [40] y [42]. En el teorema 3.2.17 caracterizaremos la σ -fragmentabilidad de un espacio de Banach a través de las coordenadas de su inmersión en c 0 (Γ) que deben de tener una propiedad de σ -fragmentabilidad uniforme, que llamaremos equi-σ -fragmentabilidad, por analogía con las familias equicontinuas.…”
Section: Fragmentabilidad Y σ -Fragmentabilidad De Aplicacionesunclassified
“…Profundizando más en este caso, el teorema 3.1.7 nos permite ahora probar el siguiente resultado [40] y [73], ver también [42]. DEMOSTRACIÓN: El teorema 3.1.7 nos da una sucesión {g n : Y → M} tales que para cada n podemos descomponer Y = ∞ m=1 Z n m siendo g n|Z n m barely continua m = 1, 2, .…”
Section: Aplicaciones Fragmentables Y σ -Fragmentablesunclassified