The study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the time and spatial domains, has attracted considerable attention recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review current progress on sampling over graphs focusing on theory and potential applications. Most methodologies used in graph signal sampling are designed to parallel those used in sampling for standard signals, however, sampling theory for graph signals significantly differs from that for Shannon-Nyquist and shift invariant signals. This is due in part to the fact that the definitions of several important properties, such as shift invariance and bandlimitedness, are different in GSP systems. Throughout, we discuss similarities and differences between standard and graph sampling and highlight open problems and challenges.