Decision making algorithms are used in a multitude of different applications. Conventional approaches for designing decision algorithms employ principled and simplified modelling, based on which one can determine decisions via tractable optimization. More recently, deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models, are becoming increasingly popular. Model-based optimization and data-centric deep learning are often considered to be distinct disciplines. Here, we characterize them as edges of a continuous spectrum varying in specificity and parameterization, and provide a tutorial-style presentation to the methodologies lying in the middle ground of this spectrum, referred to as model-based deep learning. We accompany our presentation with running examples in super-resolution and stochastic control, and show how they are expressed using the provided characterization and specialized in each of the detailed methodologies. The gains of combining model-based optimization and deep learning are demonstrated using experimental results in various applications, ranging from biomedical imaging to digital communications.
Artificial intelligence (AI) is envisioned to play a key role in future wireless technologies, with deep neural networks (DNNs) enabling digital receivers to learn to operate in challenging communication scenarios. However, wireless receiver design poses unique challenges that fundamentally differ from those encountered in traditional deep learning domains. The main challenges arise from the limited power and computational resources of wireless devices, as well as from the dynamic nature of wireless communications, which causes continual changes to the data distribution. These challenges impair conventional AI based on highly-parameterized DNNs, motivating the development of adaptive, flexible, and light-weight AI for wireless communications, which is the focus of this article. Here, we propose that AI-based design of wireless receivers requires rethinking of the three main pillars of AI: architecture, data, and training algorithms. In terms of architecture, we review how to design compact DNNs via model-based deep learning. Then, we discuss how to acquire training data for deep receivers without compromising spectral efficiency. Finally, we review efficient, reliable, and robust training algorithms via meta-learning and generalized Bayesian learning. Numerical results are presented to demonstrate the complementary effectiveness of each of the surveyed methods. We conclude by presenting opportunities for future research on the development of practical deep receivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.