2012
DOI: 10.1016/j.physa.2011.12.062
|View full text |Cite
|
Sign up to set email alerts
|

Generalized ICM for image segmentation based on Tsallis statistics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2014
2014
2018
2018

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 32 publications
0
2
0
1
Order By: Relevance
“…Olasılık tabanlı MRF algoritması görüntüdeki pikselleri dağılım fonksiyonlarına göre etiketle yapar [21]. Clique ( ∈ ) ise birbirine komşu olan noktalar bütünüdür (∀ ′ ∈ , ∈ ′ ) şeklinde tanımlanır.…”
Section: Markov Random Field (Mrf)unclassified
“…Olasılık tabanlı MRF algoritması görüntüdeki pikselleri dağılım fonksiyonlarına göre etiketle yapar [21]. Clique ( ∈ ) ise birbirine komşu olan noktalar bütünüdür (∀ ′ ∈ , ∈ ′ ) şeklinde tanımlanır.…”
Section: Markov Random Field (Mrf)unclassified
“…[15][16][17][18] Let S denotes an M × N lattice that indexes the pixels in the image. In our method, we conduct sea-land segmentation based on the MRFs method.…”
Section: Sea-land Segmentation and Morphological Processingmentioning
confidence: 99%
“…The q-algebra is derived from Tsallis definition of non-extensive entropy. There are some works in the literature that used with success the Tsallis q-entropy into the image processing [5][6][7] and image analysis 8,9 fields. The q-Gaussian kernels was previously used to noise reduction 10 .…”
Section: Introductionmentioning
confidence: 99%