Abstract:The Mediterranean basin is extremely vulnerable to climate change, and one of the areas most impacted by human water demand. Yet the green roofs increasingly created both for aesthetic reasons and to limit pollution and urban runoff are themselves very water-demanding. Successful green roof installation depends on the establishment of the vegetation, and the substrate is the key element: it conserves water, and provides the nutrients and physical support indispensable for plant growth. Since typical Mediterranean plant communities require no maintenance, this study seeks to develop techniques for creating maintenance-and watering-free horizontal green roofs for public or private buildings in a Mediterranean context. The innovative aspect of this study lies in creating two soil mixes, fine elements (clay and silt) and coarse elements (pebbles of all sizes), in two different thicknesses, to assess vegetation development. Monitoring of substrate moisture was carried out and coupled with local rainfall measurements during summer and autumn. As expected, substrate moisture is mainly influenced by substrate depth (the deeper, the moister) and composition (the finer the particles (clays and silts), the higher the moisture content). Vegetation cover impacts moisture to a lesser extent but is itself affected by the composition and depth of the substrates. These results are subsequently discussed with relation to the issue of sustainable green roofs in Mediterranean climates. Considering applications of our results, for an optimal colonization of a Mediterranean vegetation, a substrate thickness of 15 cm composed mainly of fine elements (75% clay-silt and 25% pebble-sand) would be recommended in green roofs.