Summary
A general class of regression models for ordinal data is developed and discussed. These models utilize the ordinal nature of the data by describing various modes of stochastic ordering and this eliminates the need for assigning scores or otherwise assuming cardinality instead of ordinality. Two models in particular, the proportional odds and the proportional hazards models are likely to be most useful in practice because of the simplicity of their interpretation. These linear models are shown to be multivariate extensions of generalized linear models. Extensions to non‐linear models are discussed and it is shown that even here the method of iteratively reweighted least squares converges to the maximum likelihood estimate, a property which greatly simplifies the necessary computation. Applications are discussed with the aid of examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.