2007
DOI: 10.1029/2005wr004545
|View full text |Cite
|
Sign up to set email alerts
|

Generalized maximum likelihood estimators for the nonstationary generalized extreme value model

Abstract: [1] The objective of the present study is to develop efficient estimation methods for the use of the GEV distribution for quantile estimation in the presence of nonstationarity. Parameter estimation in the nonstationary GEV model is generally done with the maximum likelihood estimation method (ML). In this work, we develop the generalized maximum likelihood estimation method (GML), in which covariates are incorporated into parameters. A simulation study is carried out to compare the performances of the GML and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

4
282
0
11

Year Published

2011
2011
2015
2015

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 363 publications
(297 citation statements)
references
References 36 publications
4
282
0
11
Order By: Relevance
“…Essa indicação de Raynal (1997) é corroborada por Nadarajah e Choi, (2007) quando afirmam que a GEV possui toda a flexibilidade contida em seus casos particulares. Com base nessa última premissa, El Adlouni et al (2007), Pujol et al (2007), Méndez (2007), Furió e Meneu (2010) e Cannon (2010) utilizam esse modelo estatístico em estudos probabilísticos de dados meteorológicos extremos. Sob o aspecto matemático, é interessante ressaltar que os parâ-metros da referida função estatística são frequentemente estimados com base nos métodos da máxima verossimilhança (Nadarajah e Choi, 2007;Pujol et al, 2007;Méndez, 2007;Sansigolo, 2008) ou dos momentos-L (Hosking e Wallis, 1997;Queiroz e Chaudhry, 2006;Wilks, 2006).…”
Section: Introductionunclassified
“…Essa indicação de Raynal (1997) é corroborada por Nadarajah e Choi, (2007) quando afirmam que a GEV possui toda a flexibilidade contida em seus casos particulares. Com base nessa última premissa, El Adlouni et al (2007), Pujol et al (2007), Méndez (2007), Furió e Meneu (2010) e Cannon (2010) utilizam esse modelo estatístico em estudos probabilísticos de dados meteorológicos extremos. Sob o aspecto matemático, é interessante ressaltar que os parâ-metros da referida função estatística são frequentemente estimados com base nos métodos da máxima verossimilhança (Nadarajah e Choi, 2007;Pujol et al, 2007;Méndez, 2007;Sansigolo, 2008) ou dos momentos-L (Hosking e Wallis, 1997;Queiroz e Chaudhry, 2006;Wilks, 2006).…”
Section: Introductionunclassified
“…Although several authors such as Coles (2001), El Adlouni et al (2007, Méndez et al (2007), Felici et al (2007), Pujol et al (2007 and, Furió and Meneu (2011), also work under this assumption of linearity, the development of a more flexible framework that can be used to model non-linear relationships is of great interesting. In this view, the study carried out by Cannon (2010), that specifies the parameters of the GEV by using a probabilistic extension of the multilayer perceptron neural network, can be seen as an important future alternative to overcome the linear approach adopted in this study.…”
Section: Choosing the Non-stationary Modelmentioning
confidence: 99%
“…However, El Adlouni et al (2007) also indicate that according to the parsimony principle when the differences between two models Model i and Model j (in which; Model i ⊂ Model j if j>i) are not significant, it is better to use the simplest one (Model i ). The uncertainty in quantile estimation tends to increase as the number of parameters to be estimated increases.…”
Section: Choosing the Modelmentioning
confidence: 99%
See 2 more Smart Citations