This manuscript addresses a new multivariate generalized predictive control strategy using the least squares support vector machine for parabolic distributed parameter systems. First, a set of proper orthogonal decomposition-based spatial basis functions constructed from a carefully selected set of data is used in a Galerkin projection for the building of an approximate low-dimensional lumped parameter systems. Then, the temporal autoregressive exogenous model obtained by the least squares support vector machine is applied in the design of a multivariate generalized predictive control strategy. Finally, the effectiveness of the proposed multivariate generalized predictive control strategy is verified through a numerical simulation study on a typical diffusion-reaction process in radical symmetry.