Toll-like receptors (TLRs) and the interleukin-1 receptor superfamily (IL-1Rs) are integral to both innate and adaptive immunity for host defence. These receptors share a conserved cytoplasmic domain, known as the TIR domain. A single-point mutation in the TIR domain of murine TLR4 (Pro712His, the Lps(d) mutation) abolishes the host immune response to lipopolysaccharide (LPS), and mutation of the equivalent residue in TLR2, Pro681His, disrupts signal transduction in response to stimulation by yeast and gram-positive bacteria. Here we report the crystal structures of the TIR domains of human TLR1 and TLR2 and of the Pro681His mutant of TLR2. The structures have a large conserved surface patch that also contains the site of the Lps(d) mutation. Mutagenesis and functional studies confirm that residues in this surface patch are crucial for receptor signalling. The Lps(d) mutation does not disturb the structure of the TIR domain itself. Instead, structural and functional studies indicate that the conserved surface patch may mediate interactions with the down-stream MyD88 adapter molecule, and that the Lps(d) mutation may abolish receptor signalling by disrupting this recruitment.
Formin proteins participate in a wide range of cytoskeletal processes in all eukaryotes. The defining feature of formins is a highly conserved approximately 400 residue region, the Formin Homology-2 (FH2) domain, which has recently been found to nucleate actin filaments. Here we report crystal structures of the S. cerevesiae Bni1p FH2 domain. The mostly alpha-helical FH2 domain forms a unique "tethered dimer" in which two elongated actin binding heads are tied together at either end by an unusual lasso and linker structure. Biochemical and crystallographic observations indicate that the dimer is stable but flexible, with flexibility between the two halves of the dimer conferred by the linker segments. Although each half of the dimer is competent to interact with filament ends, the intact dimer is required for actin nucleation and processive capping. The tethered dimer architecture may allow formins to stair-step on the barbed end of an elongating nascent filament.
Formins have conserved roles in cell polarity and cytokinesis and directly nucleate actin filament assembly through their FH2 domain. Here, we define the active region of the yeast formin Bni1 FH2 domain and show that it dimerizes. Mutations that disrupt dimerization abolish actin assembly activity, suggesting that dimers are the active state of FH2 domains. The Bni1 FH2 domain protects growing barbed ends of actin filaments from vast excesses of capping protein, suggesting that the dimer maintains a persistent association during elongation. This is not a species-specific mechanism, as the activities of purified mammalian formin mDia1 are identical to those of Bni1. Further, mDia1 partially complements BNI1 function in vivo, and expression of a dominant active mDia1 construct in yeast causes similar phenotypes to dominant active Bni1 constructs. In addition, we purified the Bni1-interacting half of the cell polarity factor Bud6 and found that it binds specifically to actin monomers and, like profilin, promotes rapid nucleotide exchange on actin. Bud6 and profilin show additive stimulatory effects on Bni1 activity and have a synthetic lethal genetic interaction in vivo. From these results, we propose a model in which Bni1 FH2 dimers nucleate and processively cap the elongating barbed end of the actin filament, and Bud6 and profilin generate a local flux of ATP-actin monomers to promote actin assembly.
Background: Malic enzymes catalyze the oxidative decarboxylation of malate to pyruvate and CO(2) with the concomitant reduction of NAD(P)(+) to NAD(P)H. They are widely distributed in nature and have important biological functions. Human mitochondrial NAD(P)(+)-dependent malic enzyme (mNAD-ME) may have a crucial role in the metabolism of glutamine for energy production in rapidly dividing cells and tumors. Moreover, this isoform is unique among malic enzymes in that it is a cooperative enzyme, and its activity is controlled allosterically. Results: The crystal structure of human mNAD-ME has been determined at 2.5 Å resolution by the selenomethionyl multiwavelength anomalous diffraction method and refined to 2.1 Å resolution. The structure of the monomer can be divided into four domains; the active site of the enzyme is located in a deep cleft at the interface between three of the domains. Three acidic residues (Glu255, Asp256 and Asp279) were identified as ligands for the divalent cation that is required for catalysis by malic enzymes. Conclusions: The structure reveals that malic enzymes belong to a new class of oxidative decarboxylases. The tetramer of the enzyme appears to be a dimer of dimers. The active site of each monomer is located far from the tetramer interface. The structure also shows the binding of a second NAD(+) molecule in a pocket 35 Å away from the active site. The natural ligand for this second binding site may be ATP, an allosteric inhibitor of the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.