Many eukaryotic cell types undergo size-dependent cell cycle transitions controlled by the ubiquitous cyclin-dependent kinase Cdk1 (refs 1-4). The proteins that control Cdk1 activity are well described but their links with mechanisms monitoring cell size remain elusive. In the fission yeast Schizosaccharomyces pombe, cells enter mitosis and divide at a defined and reproducible size owing to the regulated activity of Cdk1 (refs 2, 3). Here we show that the cell polarity protein kinase Pom1, which localizes to cell ends, regulates a signalling network that contributes to the control of mitotic entry. This network is located at cortical nodes in the middle of interphase cells, and these nodes contain the Cdk1 inhibitor Wee1, the Wee1-inhibitory kinases Cdr1 (also known as Nim1) and Cdr2, and the anillin-like protein Mid1. Cdr2 establishes the hierarchical localization of other proteins in the nodes, and receives negative regulatory signals from Pom1. Pom1 forms a polar gradient extending from the cell ends towards the cell middle and acts as a dose-dependent inhibitor of mitotic entry, working through the Cdr2 pathway. As cells elongate, Pom1 levels decrease at the cell middle, leading to mitotic entry. We propose that the Pom1 polar gradient and the medial cortical nodes generate information about cell size and coordinate this with mitotic entry by regulating Cdk1 through Pom1, Cdr2, Cdr1 and Wee1.
SUMMARY All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Formin proteins participate in a wide range of cytoskeletal processes in all eukaryotes. The defining feature of formins is a highly conserved approximately 400 residue region, the Formin Homology-2 (FH2) domain, which has recently been found to nucleate actin filaments. Here we report crystal structures of the S. cerevesiae Bni1p FH2 domain. The mostly alpha-helical FH2 domain forms a unique "tethered dimer" in which two elongated actin binding heads are tied together at either end by an unusual lasso and linker structure. Biochemical and crystallographic observations indicate that the dimer is stable but flexible, with flexibility between the two halves of the dimer conferred by the linker segments. Although each half of the dimer is competent to interact with filament ends, the intact dimer is required for actin nucleation and processive capping. The tethered dimer architecture may allow formins to stair-step on the barbed end of an elongating nascent filament.
Formins are required for cell polarization and cytokinesis, but do not have a defined biochemical activity. In Saccharomyces cerevisiae, formins and the actin-monomer-binding protein profilin are specifically required to assemble linear actin structures called 'actin cables'. These structures seem to be assembled independently of the Arp2/3 complex, the only well characterized cellular mediator of actin nucleation. Here, an activated yeast formin was purified and found to promote the nucleation of actin filaments in vitro. Formin-dependent actin nucleation was stimulated by profilin. Thus, formin and profilin mediate actin nucleation by an Arp2/3-independent mechanism. These findings suggest that distinct actin nucleation mechanisms may underlie the assembly of different actin cytoskeletal structures.
Formins have conserved roles in cell polarity and cytokinesis and directly nucleate actin filament assembly through their FH2 domain. Here, we define the active region of the yeast formin Bni1 FH2 domain and show that it dimerizes. Mutations that disrupt dimerization abolish actin assembly activity, suggesting that dimers are the active state of FH2 domains. The Bni1 FH2 domain protects growing barbed ends of actin filaments from vast excesses of capping protein, suggesting that the dimer maintains a persistent association during elongation. This is not a species-specific mechanism, as the activities of purified mammalian formin mDia1 are identical to those of Bni1. Further, mDia1 partially complements BNI1 function in vivo, and expression of a dominant active mDia1 construct in yeast causes similar phenotypes to dominant active Bni1 constructs. In addition, we purified the Bni1-interacting half of the cell polarity factor Bud6 and found that it binds specifically to actin monomers and, like profilin, promotes rapid nucleotide exchange on actin. Bud6 and profilin show additive stimulatory effects on Bni1 activity and have a synthetic lethal genetic interaction in vivo. From these results, we propose a model in which Bni1 FH2 dimers nucleate and processively cap the elongating barbed end of the actin filament, and Bud6 and profilin generate a local flux of ATP-actin monomers to promote actin assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.