2011 18th IEEE International Conference on Image Processing 2011
DOI: 10.1109/icip.2011.6115826
|View full text |Cite
|
Sign up to set email alerts
|

Generalized subspace based high dimensional density estimation

Abstract: Our paper presents a novel high dimensional probability density estimation technique using any dimensionality reduction method. Our method first performs subspace reduction using any matrix factorization algorithm and estimates the density in the low-dimensional space using sample-point variable bandwidth kernel density estimation. Subsequently, the high dimensional density is approximated from the low dimensional density parameters. The reconstruction error due to dimensionality reduction process is also mode… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?