2012
DOI: 10.1007/978-3-642-25878-7_18
|View full text |Cite
|
Sign up to set email alerts
|

Generalizing Geometric Graphs

Abstract: Abstract. Network visualization is essential for understanding the data obtained from huge real-world networks such as flight-networks, the AS-network or social networks. Although we can compute layouts for these networks reasonably fast, even the most recent display media are not capable of displaying these layouts in an adequate way. Moreover, the human viewer may be overwhelmed by the displayed level of detail. The increasing amount of data therefore requires techniques aiming at a sensible reduction of the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
4
0

Year Published

2012
2012
2018
2018

Publication Types

Select...
3
2
1

Relationship

2
4

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 29 publications
0
4
0
Order By: Relevance
“…Figure 1(e) illustrates an example of edge bundling. Other forms of clutter reduction approaches include node aggregation (Wattenberg, 2006;Dunne and Shneiderman, 2013;Zinsmaier et al, 2012), topology compression (Shi et al, 2013;Brunel et al, 2014), and sampling algorithms (Gao et al, 2014). This paper focuses on GraphMaps, proposed by Nachmanson et al (Nachmanson et al, 2015), that reduces clutter by distributing nodes to different zoom levels and routing edges on shared rails.…”
Section: Related Workmentioning
confidence: 99%
“…Figure 1(e) illustrates an example of edge bundling. Other forms of clutter reduction approaches include node aggregation (Wattenberg, 2006;Dunne and Shneiderman, 2013;Zinsmaier et al, 2012), topology compression (Shi et al, 2013;Brunel et al, 2014), and sampling algorithms (Gao et al, 2014). This paper focuses on GraphMaps, proposed by Nachmanson et al (Nachmanson et al, 2015), that reduces clutter by distributing nodes to different zoom levels and routing edges on shared rails.…”
Section: Related Workmentioning
confidence: 99%
“…One of the most popular is edge bundling, which deforms and groups together edges that are similar according to some metric (see [32] for a survey). Another approach, called geometric graph generalization, reduces vertex and/or edge clutter by collapsing groups of vertices that are geometrically close to one another into a single point [7]. Differently from our stratification, edge bundling and geometric graph generalization modify the input drawing, emphasizing its skeletal structure at the expenses of loss of details.…”
Section: Related Workmentioning
confidence: 99%
“…Aggregation techniques group vertices and edges of the graph together to obtain a smaller graph [10]. Most techniques compute a hierarchical partitioning and offer interaction to explore different branches of the tree.…”
Section: Introductionmentioning
confidence: 99%