Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-Pérot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillatordriven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.
IntroductionThe terahertz (THz) window, loosely defined as the frequency range from 0.3 to 30 THz in the electromagnetic spectrum, is located between the realms of electronics and optics 1,2 . As this region coincides with many fundamental resonances of materials, THz radiation enables very selective spectroscopic insights into all phases of matter with high temporal 3,4 and spatial 5,6,7,8 resolution. Consequently, numerous applications in basic research 3,4 , imaging 5 and quality control 8 have emerged.To fully exploit the potential of THz radiation, energy-efficient and low-cost sources of ultrashort THz pulses are required. Most broadband table-top emitters are driven by femtosecond laser pulses that generate the required THz charge current by appropriately mixing the various optical frequencies 9,10 . Sources made from solids usually consist of semiconducting or insulating structures with naturally or artificially broken inversion symmetry. When the incident photon energy is below the semiconductor band gap, optical rectification causes a charge displacement that follows the intensity envelope of the incident pump pulse 9,10,11,12,13,14,15,16,17 . For above-band-gap excitation, the response is dominated by a photocurrent 18,19,20,21,22,23,24 with a temporally step-like onset and, thus, generally smaller bandwidth than optical rectification 9 . Apart from rare exceptions 14 , however, most semiconductors used are polar 1,2,12,13,15,16,17,21,22 and strongly attenuate THz radiation around optical phonon resonances, thereby preventing emission in the so-called Reststrahlen band located between ~1 and 15 THz.The so far most promising sources covering the full THz window are photocurrents in transient gas plasmas 9,10,25,26,27,28,29 . The downside of this appealing approach is that the underlying ionization process usually requires amplified laser pulses with high threshold energies on the order of 0....