Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.
We review the principle and methodology of leakage radiation microscopy (LRM) applied to surface plasmon polaritons (SPPs). Therefore we first analyse in detail the electromagnetic theory of leaky SPP waves. We show that LRM is a versatile optical far-field method allowing direct quantitative imaging and analysis of SPP propagation on thin metal films. We illustrate the LRM potentiality by analyzing the propagation of SPP waves interacting with several two dimensional plasmonic devices realized and studied in the recent years.PACS numbers:
We report on surface plasmon polariton (SPP) waveguiding by SiO2 stripes on gold thin films. Compared to other SPP waveguide schemes, these systems provide relatively large effective refractive indices which can be described by the effective index method. By leakage radiation and near-field optical microscopy, we observe directly multimode and monomode behavior in straight SPP waveguides of different widths. Furthermore, we demonstrate waveguide bends and cross-talk free propagation across waveguide crossings.
We report the realization of a dual surface plasmon polariton (SPP)
microscope based on leakage radiation (LR) analysis. The microscope can either
image SPP propagation in the direct space or tin the Fourier space. This
particularity allows in turn manipulation of the LR image for a clear
separation of different interfering SPP contributions present close to optical
nanoelements.Comment: Appl. Phys. Lett. 89, 091117 (2006
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.