ABSTRACT:The adhesion molecule CD99 is essential for the transendothelial migration of leukocytes. In this study, we used biochemical and cellular assays to show that CD99 undergoes ectodomain shedding by the metalloprotease meprin b and subsequent intramembrane proteolysis by g-secretase. The cleavage site in CD99 was identified by mass spectrometry within an acidic region highly conserved through different vertebrate species. This finding fits perfectly to the unique cleavage specificity of meprin b with a strong preference for aspartate residues and suggests coevolution of protease and substrate. We hypothesized that limited CD99 cleavage by meprin b would alter cellular transendothelial migration (TEM) behavior in tissue remodeling processes, such as inflammation and cancer. Indeed, meprin b induced cell migration of Lewis lung carcinoma cells in an in vitro TEM assay. Accordingly, deficiency of meprin b in Mep1b 2/2 mice resulted in significantly increased CD99 protein levels in the lung. Therefore, meprin b could serve as a therapeutic target, given that in a proof-of-concept approach we showed accumulation of CD99 protein in lungs of meprin b inhibitortreated mice.-Bedau, T., Peters, F., Prox, J., Arnold, P., Schmidt, F., Finkernagel, M., Köllmann, S., Wichert, R., Otte, A., Ohler, A., Stirnberg, M., Lucius, R., Koudelka, T., Tholey, A., Biasin, V., Pietrzik, C. U., Kwapiszewska, G., Becker-Pauly, C. Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin b and promotes transendothelial cell migration. FASEB J. 31, 1226-1237 (2017). www.fasebj.orgRegulated intramembrane proteolysis (RIP) of cell adhesion molecules, such as junctional adhesion molecule (JAM)-A, intercellular adhesion molecule (ICAM)-1, and L-selectin, was shown to be essential for transendothelial migration (TEM) of inflammatory or cancer cells (1). Meprin b, a multidomain type I transmembrane metalloprotease, is an initiator of RIP, and structural studies revealed dimeric formation of the protease with the active site in proximity to the cell surface (2-4). In addition, meprin b can be shed from the cell surface by ADAM10/ 17, resulting in a soluble active protease, which for instance is important for mucus detachment in the small intestine (5). Meprin b is characterized by a unique cleavage specificity, with a preference for negatively charged amino acids (6). These structural features provide all requirements that meprin b must have to act as an ectodomain sheddase at the cell surface. Indeed, membrane-bound amyloid precursor protein (APP), for instance, is cleaved by meprin b, resulting in the release of sAPP-b fragments and neurotoxic Ab peptides (4,7,8). Many of the known substrates of meprin b have been identified by mass spectrometry (MS)-based proteomic approaches (9).