Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin  is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin  and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin . Processing of APP by meprin  was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin  ؊/؊ mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin  is a physiologically relevant enzyme in APP processing.
BackgroundThe metalloprotease meprin β cleaves the Alzheimer’s Disease (AD) relevant amyloid precursor protein (APP) as a β-secretase reminiscent of BACE-1, however, predominantly generating N-terminally truncated Aβ2-x variants.ResultsHerein, we observed increased endogenous sAPPα levels in the brains of meprin β knock-out (ko) mice compared to wild-type controls. We further analyzed the cellular interaction of APP and meprin β and found that cleavage of APP by meprin β occurs prior to endocytosis. The N-terminally truncated Aβ2-40 variant shows increased aggregation propensity compared to Aβ1-40 and acts even as a seed for Aβ1-40 aggregation. Additionally, we observed that different APP mutants affect the catalytic properties of meprin β and that, interestingly, meprin β is unable to generate N-terminally truncated Aβ peptides from Swedish mutant APP (APPswe).ConclusionConcluding, we propose that meprin β may be involved in the generation of N-terminally truncated Aβ2-x peptides of APP, but acts independently from BACE-1.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-016-0084-5) contains supplementary material, which is available to authorized users.
The amyloid precursor protein (APP) is part of a larger gene family, which has been found to form homo- or heterotypic complexes with its homologues, whereby the exact molecular mechanism and origin of dimer formation remains elusive. In order to assess the cellular location of dimerization, we have generated a cell culture model system in CHO-K1 cells, stably expressing human APP, harboring dilysine-based organelle sorting motifs [KKAA-endoplasmic reticulum (ER); KKFF-Golgi], accomplishing retention within early secretory compartments. We show that APP exists as disulfide-bonded dimers upon ER retention after it was isolated from cells, and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. In contrast, strong denaturing and reducing conditions, or deletion of the E1 domain, resulted in the disappearance of those dimers. Thus we provide first evidence that a fraction of APP can associate via intermolecular disulfide bonds, likely generated between cysteines located in the extracellular E1 domain. We particularly visualize APP dimerization itself and identified the ER as subcellular compartment of its origin using biochemical or split GFP approaches. Interestingly, we also found that minor amounts of SDS-resistant APP dimers were located to the cell surface, revealing that once generated in the oxidative environment of the ER, dimers remained stably associated during transport. In addition, we show that APP isoforms encompassing the Kunitz-type protease inhibitor (KPI) domain exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-mediated cell aggregation of Drosophila Schneider S2-cells was isoform independent. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.