2012
DOI: 10.11113/jt.v43.782
|View full text |Cite
|
Sign up to set email alerts
|

Generation of Fuzzy Rules with Subtractive Clustering

Abstract: Pembelajaran sistem pangkalan peraturan kabur menggunakan algoritma genetik mempunyai masa depan yang cerah bagi menyelesaikan beberapa masalah. Lojik kabur menawarkan cara sederhana bagi menyimpulkan maklumat input yang kasar, kabur, cacat atau tidak jelas. Model lojik kabur adalah berasaskan kaedah–kaedah empirik bergantung kepada pengalaman operator berbanding dengan pengetahuan teknikal daripada sistem. Dalam metod lojik kabur, sebarang input yang munasabah dapat diproses dan sebilangan output dapat dija… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
38
0
2

Year Published

2012
2012
2023
2023

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 72 publications
(40 citation statements)
references
References 20 publications
0
38
0
2
Order By: Relevance
“…Fuzzy logic (FL) provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy and missing input information (Priyono et al, 2005). Most of the FL models are empirically based, relying on an operator's experience rather than a technical understanding of the system.…”
Section: Fuzzy-information Systemmentioning
confidence: 99%
“…Fuzzy logic (FL) provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy and missing input information (Priyono et al, 2005). Most of the FL models are empirically based, relying on an operator's experience rather than a technical understanding of the system.…”
Section: Fuzzy-information Systemmentioning
confidence: 99%
“…*) Penulis korespondensi: victor.utomo@ gmail.com Given a set of data, set the normal value based on and use the following model (Priyono, 2005).…”
Section: Subtractive Clusteringmentioning
confidence: 99%
“…Mamdani fuzzy system used is a 1-input, 1-output system applying the Euclidean distance between the color of each pixel to the average skin color sub-space as an input, and the likelihood of being skin pixel as an output. Subtractive clustering [11] is applied on input space (contain 132000 skin and non skin pixels) to decide about the number of MFs and rules. Utilizing the obtained four clusters information and experimental knowledge, input and output MFs are designed.…”
Section: Skin and Lip Color Segmentationmentioning
confidence: 99%