In a klystron-like relativistic backward wave oscillator, the velocity modulation is mainly obtained from the resonant reflector. By introducing two pre-modulation cavities between the input cavity and the resonant reflector, the amplitude and phase of density modulation can be adjusted relatively independently, to ensure an improved fundamental harmonic current distribution. Two peaks of harmonic current with high modulation coefficient of 1.2 appear in the second slow wave structure and the dual-cavity extractor and result in large beam energy losses in both regions. Particle-in-cell simulations show that a microwave with power of 11.5 GW and efficiency of 57% can be obtained.