Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α-and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165 -induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because wellestablished selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.α/β-peptides | foldamers | protein-protein interactions | inhibitors | molecular recognition D esigned molecules that bind selectively to specific sites on proteins may serve as inhibitors of medically important macromolecular interactions or diagnostic tools for biomarker detection. Small molecules often fail for these applications because of the relatively large and irregularly shaped target surfaces (1-3). In contrast, large polypeptides (e.g., antibodies) can frequently be developed to recognize a protein surface with high affinity and selectivity and represent the state of the art for engineering ligands for specific biomacromolecular targets. Large polypeptides, however, suffer several disadvantages for in vivo applications, including costly production, low storage stability, and/ or low bioavailability because of rapid proteolytic degradation (4, 5).Backbone-modified peptides, an underexplored class of molecules, are proving to be a fruitful source of tight-binding and specific protein ligands. Peptidic oligomers that contain β-amino acid residues interspersed among α-residues ("α/β-peptides") can effectively mimic the recognition surface projected by an α-helix and thereby disrupt or augment protein-protein interactions in which one partner contributes a single helix to the interface (6, 7). The unnatural backbone diminishes α/β-peptide susceptibility to proteolytic degradation relative to conventional peptides (α-residues only, "α-peptides"). As a result, α/β-peptides can exhibit improved pharmacokinetic properties in vivo relative to analogous α-peptides (8, 9). To date, however, the α/β-peptide strategy has been restricted to mimicry of isolated α-helices, ...