We have developed
an instrument that uses photolysis of hydrogen
halides to produce nearly monoenergetic hydrogen atom beams and Rydberg
atom tagging to obtain accurate angle-resolved time-of-flight distributions
of atoms scattered from surfaces. The surfaces are prepared under
strict ultrahigh vacuum conditions. Data from these experiments can
provide excellent benchmarks for theory, from which it is possible
to obtain an atomic scale understanding of the underlying dynamical
processes governing H atom adsorption. In this way, the mechanism
of adsorption on metals is revealed, showing a penetration–resurfacing
mechanism that relies on electronic excitation of the metal by the
H atom to succeed. Contrasting this, when H atoms collide at graphene
surfaces, the dynamics of bond formation involving at least four carbon
atoms govern adsorption. Future perspectives of H atom scattering
from surfaces are also outlined.