A technique to generate (periodic or nonperiodic) oscillations systematically in first-order, continuous-time systems via a nonlinear function of the state, delayed by a certain time d, is proposed. This technique consists in choosing a nonlinear function of the delayed state with some passivity properties, tuning a gain to ensure that all the equilibrium points of the closed-loop system be unstable, and then imposing conditions on the closed-loop system to be semipassive. We include several typical examples to illustrate the effectiveness of the proposed technique, with which we can generate a great variety of chaotic attractors. We also include a physical example built with a simple electronic circuit that, after applying the proposed technique, displays a similar behavior to the logistic map.