Abstract. The covariance matrix adaptation evolution strategy (CMA-ES) rates among the most successful evolutionary algorithms for continuous parameter optimization. Nevertheless, it is plagued with some drawbacks like the complexity of the adaptation process and the reliance on a number of sophisticatedly constructed strategy parameter formulae for which no or little theoretical substantiation is available. Furthermore, the CMA-ES does not work well for large population sizes. In this paper, we propose an alternative -simpler -adaptation step of the covariance matrix which is closer to the "traditional" mutative self-adaptation. We compare the newly proposed algorithm, which we term the CMSA-ES, with the CMA-ES on a number of different test functions and are able to demonstrate its superiority in particular for large population sizes.