The objective of this study was to analyse the level of pedigree and genomic inbreeding in a herd of the Norik of Muran horses. The pedigree file included 1374 animals (603 stallions and 771 mares), while the reference population consisted of animals that were genotyped by using 70k SNP platform (n = 25). The trend of pedigree inbreeding was expressed as the probability that an animal has two identical alleles by descent according to classical formulas. The trend of genomic inbreeding was derived from the distribution of runs of homozygosity (ROHs) with various length in the genome based on the assumption that these regions reflect the autozygosity originated from past generations of ancestors. A maximum of 19 generations was found in pedigree file. As expected, the highest level of pedigree completeness was found in first five generations. Subsequent quality control of genomic data resulted in totally 54432 SNP markers covering 2.242 Mb of the autosomal genome. The pedigree analysis showed that in current generation can be expected the pedigree inbreeding at level 0.23% (ΔFPEDi = 0.19 ± 1.17%). Comparable results was obtained also by the genomic analysis, when the inbreeding in current generation reached level 0.11%. Thus, in term of genetic diversity both analyses reflected sufficient level of variability across analysed population of Norik of Muran horses.