Leptin and leptin receptor genes are considered as production traits markers in dairy or beef cattle. The aim of this study was to verify the associations of polymorphisms in bovine LEP and LEPR genes with production and reproduction traits in Slovak Spotted and Pinzgau cows. Long-life production was evaluated: milk, protein, and fat yield and reproduction traits: age at first calving, calving interval, days open, and insemination interval. In total, 296 blood samples of Slovak Spotted and 85 hair roots samples of Pinzgau cows were analyzed. In order to detect LEP/Sau3AI (BTA 4, inron 2) and LEPR/T945M (BTA 3, exon 20) genotypes PCR-RFLP method was used. In Slovak Spotted and Pinzgau cows allele frequencies were 0.838/0.162 and 0.694/0.306 for A and B LEP variants, and 0.954/0.046 and 0.912/0.088 for C and T LEPR variants, respectively. For testing the associations between SNPs LEP/Sau3AI and LEPR/T945M and evaluated traits, the General Linear Model procedure in SAS Software was used. Statistical analysis showed that SNP LEP/Sau3AI significantly affected milk, protein and fat yield (P
The Slovak Pinzgau breed faces the bottleneck effect and the loss of diversity due to unequal use of founders and a significant population decline. Further population size reduction can lead to serious problems. Information obtained here and in other studies from high-throughput genotyping of 179 individuals was used to characterise genetic diversity and differentiation of Slovak Pinzgau, Austrian Pinzgau, Cika and Piedmontese cattle by Bayesian clustering algorithm. A gene flow network for the clusters estimated from admixture results was produced. The low estimate of genetic differentiation (F) in Pinzgau cattle populations indicated that differentiation among these populations is low, particularly owing to a common historical origin and high gene flow. Changes in the log marginal likelihood indicated Austrian Pinzgau as the most similar breed to Slovak Pinzgau. All populations except the Piedmontese one displayed two ways of gene flow among populations, indicating that Piedmontese cattle was involved in producing of the analysed breeds while these breeds were not involved in creation of Piedmontese. Genetic evaluation represents an important tool in breeding and cattle selection. It is more strategically important than ever to preserve as much of the livestock diversity as possible, to ensure a prompt and proper response to the needs of future generations. Information provided by the fine-scale genetic characterization of this study clearly shows that there is a difference in genetic composition of Slovak and Austrian populations, as well as the Cika and Piedmontese cattle. Despite its population size, the Slovak Pinzgau cattle have a potential to serve as a basic gene reserve of this breed, with European and world-wide importance.
The aim of this study was to identify the evidence of recent selection based on estimation of the integrated Haplotype Score (iHS), population differentiation index (F ST ) and characterize affected regions near QTL associated with traits under strong selection in Pinzgau cattle. In total 21 Austrian and 19 Slovak purebreed bulls genotyped with Illumina bovineHD and bovineSNP50 BeadChip were used to identify genomic regions under selection. Only autosomal loci with call rate higher than 90%, minor allele frequency higher than 0.01 and Hardy-Weinberg equlibrium limit of 0.001 were included in the subsequent analyses of selection sweeps presence. The final dataset was consisted from 30538 SNPs with 81.86 kb average adjacent SNPs spacing. The iHS score were averaged into non-overlapping 500 kb segments across the genome. The F ST values were also plotted against genome position based on sliding windows approach and averaged over 8 consecutive SNPs. Based on integrated Haplotype Score evaluation only 7 regions with iHS score higher than 1.7 was found. The average iHS score observed for each adjacent syntenic regions indicated slight effect of recent selection in analysed group of Pinzgau bulls. The level of genetic differentiation between Austrian and Slovak bulls estimated based on F ST index was low. Only 24% of F ST values calculated for each SNP was greather than 0.01. By using sliding windows approach was found that 5% of analysed windows had higher value than 0.01. Our results indicated use of similar selection scheme in breeding programs of Slovak and Austrian Pinzgau bulls. The evidence for genome-wide association between signatures of selection and regions affecting complex traits such as milk production was insignificant, because the loci in segments identified as affected by selection were very distant from each other. Identification of genomic regions that may be under pressure of selection for phenotypic traits to better understanding of the relationship between genotype and phenotype is one of the challenges for livestock genetics.
This study aimed to evaluate the impact of selection on the genome structure of beef cattle through identification of selection signatures reflecting the breeding standard of each breed and to discover potential functional genetic variants to improve performance traits. Genotyping data of six beef breeds (Aberdeen Angus, Hereford, Limousin, Charolais, Piedmontese and Romagnola) were used to perform genome-wide scans for selection signatures. The approaches applied were based on an assumption that selection leads to linkage disequilibrium or to a decrease of genetic variability in genomic regions containing genotypes connected with favourable phenotypes. Thus, the selection signatures were analysed based on Wright’s F<sub>ST</sub> index, distribution of runs of homozygosity segments in the beef genome and determination of linkage disequilibrium variability between breeds. The number and length of detected selection signals were different depending on the breeds and methodological approaches. As expected due to the breeding goals of analysed breeds, common signals were located on autosomes 2, 6, 7, 13 and 20 close to the genes associated with coat colour (KIT, KDR), muscle development (GDF9, GHRH, GHR), double muscling (MSTN), meat tenderness (CAST) and intramuscular fat content (SCD). But, across the genomes of analysed breeds, unique selection signals were found as well. The subsequent analysis of those single nucleotide polymorphism markers can be beneficial for the genetic progress of studied breeds in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.