Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species.To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat's range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.