Programs for sustainable beef production are established, but the specific role of beef cows in these systems is not well defined. This work characterized cows for two traits related to sustainability, cow weight (CW) and cumulative weight weaned (WtW). Cow weight indicates nutrient requirements and enteric methane emissions. Cumulative weight weaned reflects reproductive performance and avoidance of premature culling for characteristics related to animal health, welfare, and worker safety. Both traits were evaluated with random regression models with records from a crossbred population representing 18 breeds that conduct US national cattle evaluations. The genomic REML analyses included additive and dominance components, with relationships among 22,776 animals constructed from genotypes of 181,286 potentially functional variants imputed from a low-pass sequence. Projected to 8 years of age, the additive heritability estimate for CW was 0.57 and 0.11 for WtW. Dominance heritability was 0.02 for CW and 0.19 for WtW. Many variants with significant associations with CW were within previously described quantitative trait loci (QTL) for growth-related production, meat, and carcass traits. Significant additive WtW variants were covered by QTL for traits related to reproduction and structural soundness. All breeds contributed to groups of cows with high and low total genetic values (additive + dominance effects) for both traits. The high WtW cows and cows above the WtW mean but below the CW mean had larger heterosis values and fewer bases in runs of homozygosity. The high additive heritability of CW and dominance effects on WtW indicate that breeding to improve beef cow sustainability should involve selection to reduce CW and mate selection to maintain heterosis and reduce runs of homozygosity.