Human noroviruses are one of the major causes of acute gastroenteritis worldwide. Due to the lack of an efficient human norovirus cell culture system coupled with an animal model, human norovirus research mainly relies on human volunteer studies and surrogate models. Current models either utilize human norovirus-infected animals including the gnotobiotic pig or calf and the chimpanzee models, or employ other members of the family Caliciviridae including cell culture propagable surrogate caliciviruses such as the feline calicivirus, murine norovirus and most recently the Tulane virus. One of the major features of human noroviruses is their extreme biological diversity, including genetic, antigenic and histo-blood group antigen binding diversity, and possible differences of virulence and environmental stability. This extreme biological diversity and its effect on intervention/prevention strategies cannot be modelled by uniform groups of surrogates, much less by single isolates. Tulane virus, the prototype recovirus strain, was discovered in 2008. Since then, several other novel recoviruses have been described and cell culture adapted. Recent studies indicate that the epidemiology, the biological features and diversity of recoviruses and the course of infection and clinical disease in recovirus-infected macaques more closely reflect those properties of human noroviruses than any of the current surrogates. This review aims to summarize what is currently known about recoviruses, highlight their biological similarities to human noroviruses and discuss applications of the model in addressing questions relevant for human norovirus research.