In this study, we employed high‐throughput sequencing technology to determine the complete mitochondrial genomes of six ground beetles, encompassing five Harpalinae species and one Carabinae species. The sizes of mitochondrial genomes ranged from 15,334 to 16,972 bp, encompassing 37 genes, including 13 protein‐coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Furthermore, each species was found to possess a putative control region. Combining with 65 published mitochondrial genome sequences of Carabidae as ingroups and four species from Trachypachidae, Gyrinidae and Dytiscidae as outgroups, we conducted phylogenetic analyses utilizing Maximum likelihood and Bayesian inference methods. Moreover, we reconstructed a species tree of Carabidae based on mitochondrial genome data using the coalescent‐based species tree method (ASTRAL). The results revealed that the family Carabidae was not a monophyletic group. The subfamily Harpalinae was supported to be a monophyletic group in Maximum likelihood analysis. Although the subfamily Carabinae was found to be nonmonophyletic in the concatenation analyses under both Maximum likelihood and Bayesian inference criteria, it was identified as a monophyletic group in the species tree analysis.