Evolution of pseudo-arrhenotokySabelis, M.W.; Nagelkerke, C.J.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. In arrhenotokous arthropods, males arise from unfertilized eggs. Hence, by controlling the fertilization process mothers can adjust the sex ratio in their offspring. In pseudo-arrhenotokous phytoseiid mites, however, males are haploid, but arise from fertilized eggs. The haploid state is achieved through elimination of the paternal chromosome set during embryonic development. It is shown in this paper that phytoseiid females can control the sex ratio in their offspring and that this control seems as flexible as in arrhenotokous arthropods. As predicted by current evolutionary theory of sex allocation, sex ratios approached half males/half females under random mating, whereas a female bias was observed under sib-mating. The importance of these results for understanding the adaptive significance of pseudo-arrhenotoky is discussed. It is suggested that arrhenotoky is selected for when there is a substantial risk to the females of remaining unmated. When this risk of becoming a 'wall-flower' is low, pseudo-arrhenotoky may evolve because it retains the possibility to reinstal lost genetic information in the maternally derived chromosome by using the paternal chromosome as a template for DNA-repair. The retention of the diploid state in males during embryonic development may thus have certain advantages. It is argued that pseudo-arrhenotoky may be an adaptive genetic system under certain conditions, and not an unstable system that readily reverts to diploidy or evolves towards arrhenotoky or thelytoky.