2005
DOI: 10.1021/ie049626e
|View full text |Cite
|
Sign up to set email alerts
|

Genetic Programming for the Identification of Nonlinear Input−Output Models

Abstract: Linear-in-parameters models are quite widespread in process engineering, e.g., nonlinear additive autoregressive models, polynomial ARMA models, etc. This paper proposes a new method for the structure selection of these models. The method uses genetic programming to generate nonlinear input-output models of dynamical systems that are represented in a tree structure. The main idea of the paper is to apply the orthogonal least squares (OLS) algorithm to estimate the contribution of the branches of the tree to th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
92
0
3

Year Published

2011
2011
2020
2020

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 163 publications
(104 citation statements)
references
References 25 publications
1
92
0
3
Order By: Relevance
“…O controlador se demonstrou robusto, sendo que com as válvulas mais desgastadas o sistema ficou um pouco mais lento. De acordo com [19], os modelos das 3 válvulas foram obtidos através da aplicação de uma ferramenta de identificação proposta por Madár, Abonyi e Szeifert [20], a qual utiliza Programação Genética e o algoritmo dos Mínimos Quadrados Ortogonais. Tais modelos são descritos nas equações a seguir, respectivamente para as válvulas 1, 2 e 3, onde u(k) é a entrada e y(k) é a saída do modelo no instante k: …”
Section: Resultsunclassified
“…O controlador se demonstrou robusto, sendo que com as válvulas mais desgastadas o sistema ficou um pouco mais lento. De acordo com [19], os modelos das 3 válvulas foram obtidos através da aplicação de uma ferramenta de identificação proposta por Madár, Abonyi e Szeifert [20], a qual utiliza Programação Genética e o algoritmo dos Mínimos Quadrados Ortogonais. Tais modelos são descritos nas equações a seguir, respectivamente para as válvulas 1, 2 e 3, onde u(k) é a entrada e y(k) é a saída do modelo no instante k: …”
Section: Resultsunclassified
“…The proposed NON-SC-FR was implemented based on the routines of GP Matlab package [40] which is available for the public. The following GP parameters [40], which are effective for developing polynomial models, were used: population size = 50; maximum number of generations = 500; crossover rate = 0.5; mutation rate = 0.5.…”
Section: Evaluations Of Algorithmic Effectivenessmentioning
confidence: 99%
“…The following GP parameters [40], which are effective for developing polynomial models, were used: population size = 50; maximum number of generations = 500; crossover rate = 0.5; mutation rate = 0.5.…”
Section: Evaluations Of Algorithmic Effectivenessmentioning
confidence: 99%
“…Equation (15) aims at fitting training data sets to the fuzzy regression model, and it avoids generating fuzzy regression models with too many insignificant terms. It is designed to find a balance between minimizing the number of terms and maximizing model accuracy, since a fuzzy regression model which contains many insignificant terms reduces its interpretation (Madar et al 2005). …”
Section: Fitness Functionmentioning
confidence: 99%
“…The parameters used in the intelligent fuzzy regression were set as shown in Table 3 with reference to (Madar et al 2005). Since intelligent fuzzy regression is a stochastic method, different results will be obtained from different runs.…”
Section: Model Developmentmentioning
confidence: 99%