The construction of interpretable Takagi-Sugeno (TS) fuzzy models by means of clustering is addressed. First, it is shown how the antecedent fuzzy sets and the corresponding consequent parameters of the TS model can be derived from clusters obtained by the Gath-Geva (GG) algorithm. To preserve the partitioning of the antecedent space, linearly transformed input variables can be used in the model. This may, however, complicate the interpretation of the rules. To form an easily interpretable model that does not use the transformed input variables, a new clustering algorithm is proposed, based on the expectation-maximization (EM) identification of Gaussian mixture models. This new technique is applied to two well-known benchmark problems: the MPG (miles per gallon) prediction and a simulated second-order nonlinear process. The obtained results are compared with results from the literature.
Linear-in-parameters models are quite widespread in process engineering, e.g., nonlinear additive autoregressive models, polynomial ARMA models, etc. This paper proposes a new method for the structure selection of these models. The method uses genetic programming to generate nonlinear input-output models of dynamical systems that are represented in a tree structure. The main idea of the paper is to apply the orthogonal least squares (OLS) algorithm to estimate the contribution of the branches of the tree to the accuracy of the model. This method results in more robust and interpretable models. The proposed approach has been implemented as a freely available MATLAB Toolbox, www.fmt.veim.hu/softcomp. The simulation results show that the developed tool provides an efficient and fast method for determining the order and structure for nonlinear input-output models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.