Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose of review Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. Recent findings The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. Summary More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
Purpose of review Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. Recent findings The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. Summary More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
BackgroundThe causal relationship between familial hypercholesterolemia (FH) and various vitamin deficiencies has not yet been elucidated. Therefore, this study investigated the cause-and-effect relationship between FH and the risk of multiple vitamin deficiencies in humans.MethodsMendelian randomization (MR) analysis was performed by extracting six datasets for FH, FH with ischemic heart disease (IHD), and vitamin deficiency (vitamin A, thiamine, other B-group vitamins, and vitamin D) from the FinnGen study, covering a total of 329,115; 316,290; 354,932; 354,949; 355,411 and 355,238 individuals, respectively.ResultsFH was suggestively associated with higher odds of thiamine deficiency [inverse variance weighted odds ratio (ORIVW) 95% confidence interval (CI): 1.62 (1.03, 2.55), P = 0.036] and vitamin D deficiencies [ORIVW CI: 1.35 (1.04, 1.75), P = 0.024], low-density lipoprotein receptor (LDLR) rs112898275 variant, rs11591147 and rs499883 in proprotein convertase subtilisin/kexin 9 (PCSK9), rs9644862 in cyclin-dependent kinase inhibitor 2 B antisense RNA1 (CDKN2B-AS1), and rs142834163 in dedicator of cytokinesis 6 (DOCK6) and rs115478735 in ABO blood group (ABO) strongly influenced the risk of thiamine deficiency, while the rs7412 variant in apolipoprotein E (APOE) mostly influenced the risk of vitamin D deficiency. FH with IHD was suggestively associated with higher odds of vitamin D deficiency (ORIVW, weighted median [WM][95%CI]: 1.31 [1.05, 1.64]; 1.47 [1.10, 1.97]) (P = 0.018; 0.010) without any single significant SNPs observed.ConclusionFH was positively associated with increased risks of thiamine and vitamin D deficiencies, revealing a prospective and unfortunate complication of FH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.