BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼80% of BRAF V600 -mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf V618E (analogous to the human BRAF V600E mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf V618E transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes. melanoma | drug resistance | BRAF inhibitors | mouse models T he discovery that ∼50-60% of melanomas carry BRAF V600E point mutations (1) prompted the generation of compounds specifically targeting this hyperactive mutated kinase. One such compound, PLX4032, has shown unprecedented therapeutic efficacy in clinical trials and was therefore FDA-approved for clinical therapy under the name vemurafenib. Despite its remarkable efficacy, almost all patients receiving BRAF inhibitor treatment relapsed after weeks to months of therapy (2-5). Acquired resistance to BRAF inhibitors has since been a major focus of research and two major paths to resistance have emerged: MAPK-dependent and MAPK-independent mechanisms. MAPK-dependent mechanisms primarily involve reactivation of the MAPK pathway to substitute for the inhibition of BRAF
V600E. This may be achieved through mechanisms including expression of alternative splicing forms of BRAF V600E