Natural products particularly microbial metabolites have been the mainstay of cancer chemotherapy and are likely to provide many of the lead structures and derivatives with new biological activities. In this research, the production of some potential cytotoxic metabolites from Streptomyces (S.) griseus isolate KJ623766 was carried out in 14 L laboratory fermenter under specified optimum conditions (28°C temperature, 200 RPM rotation speed, uncontrolled PH, 3 vvm aeration and 2 bar airflow pressure). After 72 hrs of incubation, the cell free culture supernatant (CFCS) was collected and extracted using ethyl acetate (1:1, v/v) at pH 7.0. Using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide (MTT) assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined with CD50 of 14 µg/ml and 20 µg/ml, respectively. Bioassay guided fractionation of the ethyl acetate extract using different chromatographic techniques had led to the purification of the cytotoxic metabolites coded W1, R1 and R2 with reproducible amounts of 20, 5, and 1.5 mg/l, respectively. The structures of respective metabolites were determined based on the mass, 1D and 2D NMR spectroscopic analysis and were identified as genistein, β-rhodomycinone and γ- rhodomycinone, respectively. Accordingly, S. griseus isolate KJ623766 can be used as a potential industrial strain for the commercial production of the isoflavonoid genistein, as well as for the production of β-and γ- rhodomycinone to be used for the construction of new derivatives with more potent cytotoxic activities of the anthracycline family. To the best of our knowledge, this is the first report about the production of the isoflavonoid genistein by S. griseus KJ623766.