Sable (Martes zibellina) and American mink (Neogale vison) are valuable species characterized by a variety of coat colour produced on fur farms. Black crystal fur phenotype is Mendelian codominant trait: heterozygous animals (Cr/ +) have white guard hairs scattered predominantly on the spine and the head, while homozygous (Cr/Cr) minks have coats resembling the Himalayan (ch/ch) or white Hedlund (h/h) types. It is one of the most recent of more than 35 currently known phenotypic traits of fur colour in American mink. Black crystal fur phenotype was first described in 1984 in the Russian population of mink, which had undergone selection for domestic defensive response to humans. Here, we performed whole-genome sequencing of American mink with Cr/Cr phenotype. We identified a missense mutation in the gene encoding the α-COP subunit of the COPI complex (COPA). The COPI complex mediates retrograde trafficking from the Golgi system to the endoplasmic reticulum and sorting of transmembrane proteins. We observed an interaction between a newly identified mutation in the COPA gene and a mutation in the microphthalmia-associated transcription factor (MITF), the latter mutation led to the formation of the white Hedlund (h/h) phenotype. Double heterozygotes for these mutations have an entirely white coat and a black-eyed phenotype similar to the phenotype of Cr/Cr or h/h minks. Our data could be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.