Host-specificity is an intrinsic feature of many bacterial pathogens, resulting from a long history of co-adaptation between bacteria and their hosts. Alpha-proteobacteria belonging to the genus Bartonella infect the erythrocytes of a wide range of mammal orders, including rodents. In this study, we performed genetic analysis of Bartonella colonizing a rodent community dominated by bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus) in a French suburban forest to evaluate their diversity, their capacity to recombine and their level of host specificity. Following the analysis of 550 rodents, we detected 63 distinct genotypes related to B. taylorii, B. grahamii, B. doshiae and a new B. rochalimae-like species. Investigating the most highly represented species, we showed that B. taylorii strain diversity was markedly higher than that of B. grahamii, suggesting a possible severe bottleneck for the latter species. The majority of recovered genotypes presented a strong association with either bank voles or wood mice, with the exception of three B. taylorii genotypes which had a broader host range. Despite the physical barriers created by host specificity, we observed lateral gene transfer between Bartonella genotypes associated with wood mice and Bartonella adapted to bank voles, suggesting that those genotypes might co-habit during their life cycle.