Among the 33 confirmed Bartonella species to date, more than half are hosted by rodent species, and at least five of them have been involved in human illness causing diverse symptoms including fever, myocarditis, endocarditis, lymphadenitis and hepatitis. In almost all countries, wild rodents are infected by extremely diverse Bartonella strains with a high prevalence. In the present paper, in light of new knowledge on rodent-adapted Bartonella species genomics, we bring together knowledge gained in recent years to have an overview of the impact of rodent-adapted Bartonella infection on humans and to determine how diversity of Bartonella helps to understand their mechanisms of adaptation to rodents and the consequences on human health.
Bartonellae are fastidious, facultative, intracellular vector-borne bacteria distributed among mammalian reservoirs worldwide. The pathogenic potential of many Bartonella spp. has increased the interest in these bacteria and advanced their research. Isolation of Bartonella spp. is laborious using classical bacteriological methods and requires specific conditions and prolonged incubation periods. In contrast, molecular methods for detection of Bartonella DNA are considered as more practical and sensitive than the former. Among the molecular methods, the use of real-time PCR assays for primary screening of Bartonella spp., followed by several molecular confirmatory assays, using either conventional or real-time PCR, is recommended. Although primary isolation of Bartonella is a laborious task, we encourage its application to all PCR-positive samples as this is the most reliable proof for the presence of live bacteria. Moreover, a successful trial will enable a broader molecular characterization and speciation of isolated colonies. The present guideline gathers and summarizes recommendations, including advantages and limitations of isolation and molecular detection of Bartonella from mammalian and arthropod samples.
Host-specificity is an intrinsic feature of many bacterial pathogens, resulting from a long history of co-adaptation between bacteria and their hosts. Alpha-proteobacteria belonging to the genus Bartonella infect the erythrocytes of a wide range of mammal orders, including rodents. In this study, we performed genetic analysis of Bartonella colonizing a rodent community dominated by bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus) in a French suburban forest to evaluate their diversity, their capacity to recombine and their level of host specificity. Following the analysis of 550 rodents, we detected 63 distinct genotypes related to B. taylorii, B. grahamii, B. doshiae and a new B. rochalimae-like species. Investigating the most highly represented species, we showed that B. taylorii strain diversity was markedly higher than that of B. grahamii, suggesting a possible severe bottleneck for the latter species. The majority of recovered genotypes presented a strong association with either bank voles or wood mice, with the exception of three B. taylorii genotypes which had a broader host range. Despite the physical barriers created by host specificity, we observed lateral gene transfer between Bartonella genotypes associated with wood mice and Bartonella adapted to bank voles, suggesting that those genotypes might co-habit during their life cycle.
Many bark beetles belonging to the Dendroctonus genus carry bacterial and fungal microbiota, forming a symbiotic complex that helps the insect to colonize the subcortical environment of the host tree. However, the biodiversity of those bacteria at the surface of the cuticle or inside the body parts of bark beetles is not well established. The aim of this study was to characterize the bacterial microbiome associated with the eastern larch beetle, Dendroctonus simplex, using bacterial 16S rRNA gene pyrosequencing. The ecto- and endomicrobiome and the subcortical galleries were investigated. Several bacterial genera were identified, among which Pseudomonas, Serratia and Yersinia are associated with the surface of the beetle cuticle, and genera belonging to Enterobacteriaceae and Gammaproteobacteria with the interior of the insect body. The index of dissimilarity indicates that the bacterial microbiome associated with each environment constitutes exclusive groups. These results suggest the presence of distinct bacterial microbiota on the surface of the cuticle and the interior of D. simplex body. Additionally, the bacterial diversity identified in the galleries is substantially different from the ectomicrobiome, which could indicate a selection by the insect. This study reports for the first time the identification of the eastern larch beetle microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.