Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella-rodent-flea system. The role of the latter two components is emphasized.
Infection with canine vector-borne pathogens was evaluated in dogs from four different regions of Costa Rica by PCR. Demographic data, clinical signs, packed cell volume values, and the presence of tick infestation were recorded for each dog. Forty seven percent (69/146) of the dogs were infected with at least one pathogen and 12% were co-infected with two pathogens. Ehrlichia canis was detected in 34%, Anaplasma platys in 10%, Babesia vogeli in 8%, and Hepatozoon canis in 7.5% of the blood samples. No infection was detected with Leishmania spp. in blood, skin scrapings or conjunctival swabs. Thirty percent of the dogs presented at least one clinical sign compatible with vector-borne disease, and of those, 66% were infected with a pathogen. Subclinical infections were determined in 58% of the infected dogs including 82% (9/11), 58% (29/50), 42% (5/12) and 36% (5/14) of the dogs with H. canis, E. canis, B. vogeli and A. platys infections, respectively. A distinct relationship was found between infection and anemia. The mean PCV values were 34.4% in dogs with no infection, 31.5% in those who had a single infection and 23% in those with co-infection. Co-infected dogs had significantly lower PCV values compared to non-infected and single-infected dogs (p<0.0001). Thirty five percent (51/146) of the dogs were infested with ticks, 82% of them were infested with Rhipicephalus sanguineus sensu lato and 18% with Amblyomma ovale. Dogs infected with A. platys, B. vogeli, or E. canis were significantly associated with R. sanguineus s.l. infestation (p<0.029). This is the first description of infections with B. vogeli and H. canis in Costa Rica as well as in Central America. The results of this study indicate that multiple vector-borne pathogens responsible for severe diseases infect dogs in Costa Rica and therefore, increased owner and veterinarian awareness are needed. Moreover, prevention of tick infestation is recommended to decrease the threat of these diseases to the canine population.
Bartonellae are fastidious, facultative, intracellular vector-borne bacteria distributed among mammalian reservoirs worldwide. The pathogenic potential of many Bartonella spp. has increased the interest in these bacteria and advanced their research. Isolation of Bartonella spp. is laborious using classical bacteriological methods and requires specific conditions and prolonged incubation periods. In contrast, molecular methods for detection of Bartonella DNA are considered as more practical and sensitive than the former. Among the molecular methods, the use of real-time PCR assays for primary screening of Bartonella spp., followed by several molecular confirmatory assays, using either conventional or real-time PCR, is recommended. Although primary isolation of Bartonella is a laborious task, we encourage its application to all PCR-positive samples as this is the most reliable proof for the presence of live bacteria. Moreover, a successful trial will enable a broader molecular characterization and speciation of isolated colonies. The present guideline gathers and summarizes recommendations, including advantages and limitations of isolation and molecular detection of Bartonella from mammalian and arthropod samples.
Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S-23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0-45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria.
The cattle tick Rhipicephalus (Boophilus) microplus was first reported in West Africa in Ivory Coast, in 2007. Since then it has made an aggressive eastward advancement having been reported in four other West African countries: Mali, Burkina Faso, Togo and Benin. We herein report the first molecular identification of this tick species in Nigeria, West Africa, and highlight the threat it poses to livestock health. A nation-wide tick survey was conducted in 12 out of 36 states across the various agro ecological zones of Nigeria over a 1 year period (April 2014-March 2015). In total 1498 ticks belonging to three genera collected from cattle were morphologically identified. Overall, Amblyomma species constituted the highest percentage of sampled ticks, 50.2% (752/1498), followed by Rhipicephalus (including the subgenus Boophilus) species, 29.4% (440/1498) and Hyalomma species, 20.4% (306/1498). The presence of Rh. (B.) microplus was identified morphologically from four out of the 12 states. This finding was confirmed for the first time in Nigeria using a molecular method targeting the ITS-2 region of the ticks in three of the 12 states. This study ascertained the presence of Rh. (B.) microplus in Nigeria in addition to a broad variety of cattle tick species, most of which are of veterinary importance. The implication of this finding is that there may be additional economic burden to livestock farmers due to increased cost of tick control occasioned by the acaricide resistance by this tick species widely reported from different climes. Additionally, there may be a potential upsurge in incidence of hemoparasitic infections in cattle leading to increased morbidity, cost of treatment and mortalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.