Ochrobactrum intermedium is an opportunistic human pathogen belonging to the alpha 2 subgroup of proteobacteria. The 16S rDNA sequences of nine O. intermedium isolates from a collection of clinical and environmental isolates exhibited a 46-bp insertion at position 187, which was present in only one sequence among the 82 complete or partial 16S rDNA sequences of Ochrobactrum spp. available in data banks. Reverse transcription-PCR experiments showed that the 46-bp insertion remained in the 16S rRNA. The inserted sequence folded into a stem-loop structure, which took place in and prolonged helix H184 of the 16S rRNA molecule. Helix H184 has been described as conserved in length among eubacteria, suggesting the idiosyncratic character of the 46-bp insertion. Pulsed-field gel electrophoresis experiments showed that seven of the clinical isolates carrying the 46-bp insertion belonged to the same clone. Insertion and rrn copy numbers were determined by hybridization and I-CeuI digestion. In the set of clonal isolates, the loss of two insertion copies revealed the deletion of a large genomic fragment of 150 kb, which included one rrn copy; deletion occurred during the in vivo evolution of the clone. Determination of the rrn skeleton suggested that the large genomic rearrangement occurred during events involving homologous recombination between rrn copies. The loss of insertion copies suggested a phenomenon of concerted evolution among heterogeneous rrn copies.The genus Ochrobactrum belongs to the alpha 2 subgroup of Proteobacteria and is the closest relative to the genus Brucella. Ochrobactrum anthropi was considered the sole and type species of the genus Ochrobactrum (15) until 1998, when Ochrobactrum intermedium was proposed as a new species of this genus (50). Factors discriminating between O. anthropi and O. intermedium were their low DNA-DNA hybridization, their different 16S ribosomal DNA (rDNA) sequences, the different Western blot profiles of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated whole-cell proteins, and the resistance of O. intermedium to colistin and polymyxin B (50). In a recent study, Lebuhn et al. (21) performed a polyphasic analysis of a large collection of Ochrobactrum sp. strains isolated from the wheat rhizoplane. They described two new species, Ochrobactrum grignonense and Ochrobactrum tritici and proposed the separation of the Brucella-Ochrobactrum group into five clades with O.