Among the seven species characterized within the genus Veillonella, three (Veillonella dispar, Veillonella parvula and Veillonella atypica) have so far been isolated from human flora and during infectious processes. Sequencing and analysis of 16S rDNA (rrs) has been described as the best method for identification of Veillonella strains at the species level since phenotypic characteristics are unable to differentiate between species. rrs sequencing for the three species isolated from humans showed more than 98 % identity between them. Four rrs copies were found in the reference strains and in all the clinical isolates studied. The sequences of each rrs were determined for the clinical strain ADV 360.1, and they showed a relatively high level of heterogeneity (1?43 %). In the majority of cases, polymorphic positions corresponded to nucleotides allowing differentiation between the three species isolated from humans. Moreover, variability observed between rrs copies was higher than that between 16S rDNA sequences of V. parvula and V. dispar. Phylogenetic analysis showed that polymorphism between rrs copies affected the position of strain ADV 360.1 in the tree. Variable positions occurred in stems and loops belonging to variable and hypervariable regions of the 16S rRNA secondary structure but did not change the overall structure of the 16S rRNA. PCR-RFLP experiments performed on 27 clinical isolates of Veillonella sp. suggested that inter-rrs heterogeneity occurs widely among the members of the genus Veillonella. These results, together with the lack of phenotypic criteria for species differentiation, give preliminary arguments for unification of V. dispar and V. parvula.
Ochrobactrum intermedium is an opportunistic human pathogen belonging to the alpha 2 subgroup of proteobacteria. The 16S rDNA sequences of nine O. intermedium isolates from a collection of clinical and environmental isolates exhibited a 46-bp insertion at position 187, which was present in only one sequence among the 82 complete or partial 16S rDNA sequences of Ochrobactrum spp. available in data banks. Reverse transcription-PCR experiments showed that the 46-bp insertion remained in the 16S rRNA. The inserted sequence folded into a stem-loop structure, which took place in and prolonged helix H184 of the 16S rRNA molecule. Helix H184 has been described as conserved in length among eubacteria, suggesting the idiosyncratic character of the 46-bp insertion. Pulsed-field gel electrophoresis experiments showed that seven of the clinical isolates carrying the 46-bp insertion belonged to the same clone. Insertion and rrn copy numbers were determined by hybridization and I-CeuI digestion. In the set of clonal isolates, the loss of two insertion copies revealed the deletion of a large genomic fragment of 150 kb, which included one rrn copy; deletion occurred during the in vivo evolution of the clone. Determination of the rrn skeleton suggested that the large genomic rearrangement occurred during events involving homologous recombination between rrn copies. The loss of insertion copies suggested a phenomenon of concerted evolution among heterogeneous rrn copies.The genus Ochrobactrum belongs to the alpha 2 subgroup of Proteobacteria and is the closest relative to the genus Brucella. Ochrobactrum anthropi was considered the sole and type species of the genus Ochrobactrum (15) until 1998, when Ochrobactrum intermedium was proposed as a new species of this genus (50). Factors discriminating between O. anthropi and O. intermedium were their low DNA-DNA hybridization, their different 16S ribosomal DNA (rDNA) sequences, the different Western blot profiles of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated whole-cell proteins, and the resistance of O. intermedium to colistin and polymyxin B (50). In a recent study, Lebuhn et al. (21) performed a polyphasic analysis of a large collection of Ochrobactrum sp. strains isolated from the wheat rhizoplane. They described two new species, Ochrobactrum grignonense and Ochrobactrum tritici and proposed the separation of the Brucella-Ochrobactrum group into five clades with O.
The alpha-proteobacterial genus Ochrobactrum groups together organisms that display varied life-styles, such as free-living bacteria, members of rhizosphere and soil, nitrogen-fixing bacteria in plant nodules, xenobiotic-degrading bacteria, colonizers of nematodes and insects, and opportunistic human pathogens. The genomes of nine strains of Ochrobactrum anthropi and eight strains of Ochrobactrum intermedium were analyzed by pulsed-field gel electrophoresis of the whole genome and of I-CeuI digestion fragments. All isolates and type strains of O. anthropi and O. intermedium possessed two high-molecular-weight circular replicons identified as two independent chromosomes on the basis of 16S rDNA hybridization. The genome of the type strain of Ochrobactrum tritici, Ochrobactrum grignonense, and Ochrobactrum gallinifaecis also contained two circular chromosomes. The megaplasmid content was highly variable even among strains in the same species, leading to whole-genome sizes that ranged from 5.060 to 8.300 Mbp and from 4.690 to 7.680 Mbp for O. anthropi and O. intermedium, respectively. This exceptional level of genomic diversity could be related to the adaptability of Ochrobactrum spp. to various ecological niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.