Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples Three novel Gram-negative, non-fermenting aerobic bacilli were isolated from human clinical samples. They shared more than 99.8 % of the 16S rRNA gene nucleotide positions. The strains were related to Ochrobactrum intermedium with about 97.48 % 16S rRNA gene sequence similarity. In 16S rRNA gene-, dnaK-and rpoB-based phylogenies, the strains were grouped in a lineage that was distinct from other Ochrobactrum species in the family Brucellaceae. Fatty acid composition, polar lipids, quinone system, DNA-DNA relatedness, genome organization, and physiological and biochemical data differentiated these isolates from recognized species of the genus Ochrobactrum. The three clinical strains therefore represent a novel species within the genus Ochrobactrum, for which the name Ochrobactrum pseudintermedium sp. nov., is proposed. The type strain is ADV31 T (=CIP 109116 T =DSM 17490 T ). The DNA G+C content of strain ADV31 T was 54.5 mol%.
Roseomonas spp. are increasingly involved in human infectious diseases. The environmental source for infection is generally admitted in published cases owing to the origin of most Roseomonas species and to their affiliation to the family Acetobacteraceae in Rhodospirillales, which mainly groups environmental bacteria. For a better delineation of Roseomonas habitat and infectious reservoir, we related phenotype, phylotype (16S rRNA gene), genomotype (pulsed-field gel electrophoresis) and origin of 33 strains isolated from humans, hospital environment and natural environment. Genetic and metagenomic databases were also surveyed. The population structure of the genus showed clades associated with humans, whereas others grouped environmental strains only. Roseomonas mucosa is the main human-associated species and the study supported the idea that opportunistic infections due to this species are related to the patient skin microbiota rather than to the environment. In contrast, some strains belonging to other species isolated from patients with cystic fibrosis were related to environmental clades, suggesting an exogenous source for patient colonization. Accurate knowledge about the reservoirs of opportunistic pathogens that have long been considered of environmental origin is still needed and would be helpful to improve infection control and epidemiological survey of emerging human pathogens.
Ochrobactrum intermedium is considered as an emerging human environmental opportunistic pathogen with mild virulence. The distribution of isolates and sequences described in literature and databases showed frequent association with human beings and polluted environments. As population structures are related to bacterial lifestyles, we investigated by multi-locus approach the genetic structure of a population of 65 isolates representative of the known natural distribution of O. intermedium. The population was further surveyed for genome dynamics using pulsed-field gel electrophoresis and genomics. The population displayed a clonal epidemic structure with events of recombination that occurred mainly in clonal complexes. Concerning biogeography, clones were shared by human and environments and were both cosmopolitan and local. The main cosmopolitan clone was genetically and genomically stable, and grouped isolates that all harbored an atypical insertion in the rrs. Ubiquitism and stability of this major clone suggested a clonal succes in a particular niche. Events of genomic reduction were detected in the population and the deleted genomic content was described for one isolate. O. intermedium displayed allopatric characters associated to a tendancy of genome reduction suggesting a specialization process. Considering its relatedness with Brucella, this specialization might be a commitment toward pathogenic life-style that could be driven by technological selective pressure related medical and industrial technologies.
BackgroundOchrobactrum anthropi is a versatile bacterial species with strains living in very diverse habitats. It is increasingly recognized as opportunistic pathogen in hospitalized patients. The population biology of the species particularly with regard to the characteristics of the human isolates is being investigated. To address this issue, we proposed a polyphasic approach consisting in Multi-Locus Sequence Typing (MLST), multi-locus phylogeny, genomic-based fingerprinting by pulsed-field gel electrophoresis (PFGE) and antibiotyping.ResultsWe tested a population of 70 O. anthropi clinical (n = 43) and environmental (n = 24) isolates as well as the type strain O. anthropi ATCC49188T and 2 strains of Ochrobactrum lupini and Ochrobactrum cytisi isolated from plant nodules. A Multi-Locus Sequence Typing (MLST) scheme for O. anthropi is proposed here for the first time. It was based on 7 genes (3490 nucleotides) evolving mostly by neutral mutations. The MLST approach suggested an epidemic population structure. A major clonal complex corresponded to a human-associated lineage since it exclusively contained clinical isolates. Genomic fingerprinting separated isolates displaying the same sequence type but it did not detect a population structure that could be related to the origin of the strains. None of the molecular method allowed the definition of particular lineages associated to the host-bacteria relationship (carriage, colonisation or infection). Antibiotyping was the least discriminative method.ConclusionThe results reveal a human-associated subpopulation in our collection of strains. The emergence of this clonal complex was probably not driven by the antibiotic selective pressure. Therefore, we hypothesise that the versatile species O. anthropi could be considered as a human-specialized opportunistic pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.