Formation of progeny viruses in the nuclei of HeLa cells infected with adenovirus type 5 was studied at the ultrastructural level by in situ hybridization techniques allowing specific detection of either viral double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA). Prior to the initiation of replication of viral genomes, infective DNA molecules which entered the nucleus of the target cell were randomly distributed among host chromatin fibers including nucleolus-associated chromatin. They were double-stranded, that is, without single-strand breaks. Such association of viral DNA with host condensed chromatin also occurred in mitosis. The initiation of viral genome replication occurred simultaneously with the appearance in the nucleoplasm of small fibrillar regions containing intermingled viral dsDNA and ssDNA. Later, at the intermediate stage of nuclear transformation, viral dsDNA and ssDNA molecules were almost entirely separated into two contiguous substructures. At this stage, viruses were observed occasionally in the vicinity of viral ssDNA accumulation sites. Still later, an additional substructure developed in the centre of the nucleus which consisted of large quantities of viral dsDNA, traces of viral ssDNA and abundant viruses. Portions of viral ssDNA were attached to some viruses even at late stage of nuclear transformation, an association which strongly suggests the occurrence of encapsidation of at least some of the viral genomes while they are still engaged in replication.