Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.
The envelope of hepatitis B virus contains three related glycoproteins (termed L, M and S) produced by alternative translation initiation in a single coding region. The smallest of these, the S protein, is a 24 kDa glycoprotein with multiple transmembrane domains. The M and L proteins contain the entire S domain at their C‐termini, but harbor at their N‐terminal additional (preS) domains of 55 or 174 amino acids, respectively. Most of these preS residues are displayed on the surface of mature virions and hence would be expected to be translocated into the endoplasmic reticulum (ER) lumen during biosynthesis. Using a coupled, in vitro translation/translocation system we now demonstrate that, contrary to expectation, virtually all preS residues of the L protein are cytoplasmically disposed in the initial translocation product. This includes some preS sequences which in the M protein are indeed translocated into the ER lumen. Since preS sequences are found on the external surface of the virion envelope, our results indicate that during or following budding a dramatic reorganization of either the envelope proteins or the lipid bilayer (or both components) must occur to allow surface display of these sequences. These findings imply that some membrane budding events can have remarkable and previously unsuspected topological consequences.
Adenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Both cellular and viral proteins that interact with adenovirus packaging elements in vitro have been identified. In this study, we characterized a group of recombinant viruses that carry site-specific point mutations within a minimal packaging domain. The mutants were analyzed for growth properties in vivo and for the ability to bind cellular and viral proteins in vitro. Our results are consistent with a requirement of the viral IVa2 protein for DNA packaging via a direct interaction with packaging sequences. Our results also indicate that higher-order IVa2-containing complexes that form on adjacent packaging repeats in vitro are the complexes required for the packaging activity of these sites in vivo. Chromatin immunoprecipitation was used to study proteins that bind directly to the packaging sequences. These results demonstrate site-specific interaction of the viral IVa2 and L1 52/55K proteins with the Ad5 packaging domain in vivo. These results confirm and extend those previously reported and provide a framework on which to model the adenovirus assembly process.Adenovirus (Ad) assembly has been studied by using pulsechase kinetic analyses, through the characterization of temperature-sensitive virus mutants blocked at different stages of assembly at the restrictive temperature, by studies of virus mutants defective in the expression of proteins involved in the packaging process, and by studies of mutants defective in the packaging sequences (2-4, 6-8, 12, 25, 31, 32). The results suggest that adenovirus assembly follows an ordered series of assembly and processing events analogous to those found in the assembly of bacteriophages. Whether the viral genome is involved in nucleating the initiating steps of capsid morphogenesis or whether viral DNA is inserted into an empty, preformed capsid has not been resolved. It is clear, however, that the viral genome contains cis-acting sequences that mediate the packaging process (reviewed in reference 20). Adenovirus DNA packaging occurs in a polar manner from the left end of the genome (1, 28). The genomes of adenovirus type 3 (Ad3), Ad5, and Ad16, representatives of adenovirus subgroups B and C, harbor conserved packaging signals (6,10,19,22). These conserved cis-acting packaging domains suggest similar mechanisms of selective and polar DNA packaging for all adenovirus subgroups.Ad5 DNA encapsidation is dependent on cis-acting sequences located between nucleotides (nt) 230 and 380 (Fig. 1A) (6,7,13,25). Seven repeated sequences (termed A-repeats due to their AT-ric...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.