Increasing planting density is an effective way to improve maize yield, but high plant populations often cause a lodging problem. This experiment was conducted to investigate the effect of increasing planting density on stalk lodging resistance and grain yield, and to explore the effects on stalk and yield properties of spraying ethephon in densely planted summer maize. The summer maize hybrid, Xundan20 (XD20), was used as experimental material. It was grown by spraying water (CK) or ethephon (E) at BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17 under three different planting densities of 60,000 plants ha−1 (L), 75,000 plants ha−1 (M) and 90,000 plants ha−1 (H) in order to explore the possibility of synergistic improvement in stalk lodging resistance and grain yield. The results from this experiment suggested that the gravity center height of densely planted summer maize was significantly increased, the stem diameter, area and number of vascular bundles were significantly decreased and the dry weight per unit internode was significantly decreased, thereby weakening the stalk rind penetration strength and bending performance, resulting in a significant increase in lodging percentage. The ear height was significantly decreased and the SPAD (soil and plant analysis development) and canopy light transmittance were increased after spraying ethephon; then, the internode dry weight per unit length was increased and the stalk rind penetration strength and bending performance were enhanced so as to significantly reduce the lodging percentage and increase the grain yield. The correlation analysis further showed that lodging percentage was significantly negatively correlated with stem diameter, area and number of vascular bundles and stalk bending performance, but there were no strong relationships with grain yield. This suggested that the synergistic improvement in stalk lodging resistance and grain yield was not contradictory. Under the experiment conditions, the effect of spraying ethephon was most significant when the planting density was 90,000 plants ha−1. At the time, the lodging percentage and grain yield were 12.2% and 11,137.5 kg ha−1, which were decreased by 44.6% and increased by 8.0% compared with the control treatment. Scientific chemical regulation could significantly improve the stalk lodging resistance and grain yield of densely planted summer maize.