High quality is the main goal of today’s maize breeding and the investigation of grain quality traits would help to breed high-quality varieties in maize. In this study, genome-wide association studies in a set of 248 diverse inbred lines were performed with 83,057 single nucleotide polymorphisms (SNPs), and five grain quality traits were investigated in diverse environments for two years. The results showed that maize inbred lines showed substantial natural variations of grain quality and these traits showed high broad-sense heritability. A total of 49 SNPs were found to be significantly associated with grain quality traits. Among these SNPs, four co-localized sites were commonly detected by multiple traits. The candidate genes which were searched for can be classified into 11 biological processes, 13 cellular components, and 6 molecular functions. Finally, we found 29 grain quality-related genes. These genes and the SNPs identified in the study would offer essential information for high-quality varieties breeding programs in maize.
Background Stalk lodging is one of the main factors affecting maize (Zea mays L.) yield and limiting mechanized harvesting. Developing maize varieties with high stalk lodging resistance requires exploring the genetic basis of lodging resistance-associated agronomic traits. Stalk strength is an important indicator to evaluate maize lodging and can be evaluated by measuring stalk rind penetrometer resistance (RPR) and stalk buckling strength (SBS). Along with morphological traits of the stalk for the third internodes length (TIL), fourth internode length (FIL), third internode diameter (TID), and the fourth internode diameter (FID) traits are associated with stalk lodging resistance. Results In this study, a natural population containing 248 diverse maize inbred lines genotyped with 83,057 single nucleotide polymorphism (SNP) markers was used for genome-wide association study (GWAS) for six stalk lodging resistance-related traits. The heritability of all traits ranged from 0.59 to 0.72 in the association mapping panel. A total of 85 significant SNPs were identified for the association mapping panel using best linear unbiased prediction (BLUP) values of all traits. Additionally, five candidate genes were associated with stalk strength traits, which were either directly or indirectly associated with cell wall components. Conclusions These findings contribute to our understanding of the genetic basis of maize stalk lodging and provide valuable theoretical guidance for lodging resistance in maize breeding in the future.
The vascular bundle plays an important role in nutrient transportation in plants and exerts great influence on crop yield. Maize is widely used for food, feed, and fuel, producing the largest yield in the world. However, genes and molecular mechanism controlling vascular bundle-related traits in maize have largely remained undiscovered. In this study, a natural population containing 248 diverse maize inbred lines genotyped with high-throughput SNP markers was used for genome-wide association study. The results showed that broad variations existed for the vascular bundle-related traits which are subject to genetic structure and it was suitable for association analysis. In this study, we identified 15, 13, 2, 1, and 5 SNPs significantly associated with number of small vascular bundle, number of large vascular bundle, average area of single small vascular bundle, average area of single large vascular bundle, and cross-sectional area, respectively. The 210 candidate genes in the confidence interval can be classified into ten biological processes, three cellular components, and eight molecular functions. As for the Kyoto Encyclopedia of Genes and Genomes analysis of the candidate genes, a total of six pathways were identified. Finally, we found five genes related to vascular development, three genes related to cell wall, and two genes related to the mechanical strength of the stalk. Our results provide the further understanding of the genetic foundation of vascular bundle-related traits in maize stalk.
General combining ability (GCA) is an important index for inbred lines breeding of maize. To identify the genetic loci of GCA and associated agronomic traits, an association analysis with 195 SSRs was made in phenotypic traits of 240 F1 derived from 120 elite inbred lines containing current breeding resources of maize crossed with 2 testers (Zheng58 and Chang7-2) in two places in 2018. All of the 20 association loci detected for grain yield (GY), plant height (PH), ear height (EH) and GCA for the three traits in two places could explain a phenotypic variation range of 7.31%-9.29%. Among the 20 association loci, 9 (7.31%-9.04%) were associated with GY, 4 (7.22%-8.91%) were related to GCA of GY, 1 (7.56%) was associated with PH, and 3 (7.53%-8.96%) were related to EH. In addition, 3 loci (9.14%-9.29%) were associated with GCA of PH whereas no locus was identified for GCA of EH. In the comparison of the association loci detected in Baoding and Handan, interestingly, one locus (7.69% and 8.11%) was identified in both environments and one locus (7.52% and 7.82%) was identified for yield and GCA of yield. Therefore, the identification of GY-, PH-, EH- and GCA-related association loci could not only provide references for high yield breeding of maize, but also help us comprehend the relationships among GY, agricultural traits and GCA.
Background Maize kernel row number (KRN) is one of the most important yield traits and has changed greatly during maize domestication and selection. Elucidating the genetic basis of KRN will be helpful to improve grain yield in maize. Results Here, we measured KRN in four environments using a nested association mapping (NAM) population named HNAU-NAM1 with 1,617 recombinant inbred lines (RILs) that were derived from 12 maize inbred lines with a common parent, GEMS41. Then, five consensus quantitative trait loci (QTLs) distributing on four chromosomes were identified in at least three environments along with the best linear unbiased prediction (BLUP) values by the joint linkage mapping (JLM) method. These QTLs were further validated by the separate linkage mapping (SLM) and genome-wide association study (GWAS) methods. Three KRN genes cloned through the QTL assay were found in three of the five consensus QTLs, including qKRN1.1, qKRN2.1 and qKRN4.1. Two new QTLs of KRN, qKRN4.2 and qKRN9.1, were also identified. On the basis of public RNA-seq and genome annotation data, five genes highly expressed in ear tissue were considered candidate genes contributing to KRN. Conclusions This study carried out a comprehensive analysis of the genetic architecture of KRN by using a new NAM population under multiple environments. The present results provide solid information for understanding the genetic components underlying KRN and candidate genes in qKRN4.2 and qKRN9.1. Single-nucleotide polymorphisms (SNPs) closely linked to qKRN4.2 and qKRN9.1 could be used to improve inbred yield during molecular breeding in maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.