In studies of cellular function in cancer, researchers are increasingly able to choose from many -omics assays as functional readouts. Choosing the correct readout for a given study can be difficult, and which layer of cellular function is most suitable to capture the relevant signal may be unclear. In this study, we consider prediction of cancer mutation status (presence or absence) from functional -omics data as a representative problem. Since functional signatures of cancer mutation have been identified across many data types, this problem presents an opportunity to quantify and compare the ability of different -omics readouts to capture signals of dysregulation in cancer. The TCGA Pan-Cancer Atlas contains genetic alteration data including somatic mutations and copy number variants (CNVs), as well as several -omics data types. From TCGA, we focus on RNA sequencing, DNA methylation arrays, reverse phase protein arrays (RPPA), microRNA, and somatic mutational signatures as -omics readouts.Across a collection of genes recurrently mutated in cancer, RNA sequencing and DNA methylation were the most effective predictors of mutation state. Surprisingly, we found that for most mutated genes, they were approximately equally effective predictors. Performance was more variable between mutations than it was between data types for the same mutation, and there was little difference between the top data types for the majority of genes. We also found that combining data types into a single multi-omics model provided little or no improvement in predictive ability over the best individual data type. Based on our results, for the design of studies focused on the functional outcomes of cancer mutations, we recommend focusing on gene expression or DNA methylation as first-line readouts.