The CRISPR/Cas9 technology has greatly progressed research on non‐model organisms, demonstrating successful applications in genome editing for various insects. However, its utilization in the case of the soybean looper, Chrysodeixis includens, a notable pest affecting soybean crops, has not been explored due to constraints such as limited genomic information and the embryonic microinjection technique. This study presents successful outcomes in generating heritable knockout mutants for a pigment transporter gene, scarlet, in C. includens through CRISPR/Cas9‐mediated mutagenesis. The scarlet locus identified in the genome assembly of C. includens consists of 14 exons, with a coding sequence extending for 1,986 bp. Two single guide RNAs (sgRNAs) were designed to target the first exon of scarlet. Microinjection of these two sgRNAs along with the Cas9 protein into fresh embryos resulted in the successful production of variable phenotypes, particularly mutant eyes. The observed mutation rate accounted for about 16%. Genotype analysis revealed diverse indel mutations at the target site, presumably originating from double‐strand breaks followed by the nonhomologous end joining repair, leading to a premature stop codon due to frame shift. Single‐pair mating of the mutant moths produced G1 offspring, and the establishment of a homozygous mutant strain occurred in G2. The mutant moths exhibited lightly greenish or yellowish compound eyes in both sexes, confirming the involvement of scarlet in pigmentation in C. includens. Notably, the CRISPR/Cas9‐mediated genome editing technique serves as a visible phenotypic marker, demonstrating its proof‐of‐concept applicability in C. includens, as other pigment transporter genes have been utilized as visible markers to establish genetic control for various insects. These results provide the first successful case that the CRISPR/Cas9 method effectively induces mutations in C. includes, an economically important soybean insect pest.