Apyrase is a class of enzyme that catalyzes the hydrolysis of nucleoside triphosphates/diphosphates (NTP/NDP), which widely involved in regulation of plant growth and stress responses. However, apyrase family genes in maize have not been identified, and their characteristics and functions are largely unknown. In this study, we identified 16 apyrases (named as ZmAPY1-ZmAPY16) in maize genome, and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, upstream regulatory transcription factors and expression patterns. Analysis of the transcriptome database unveiled tissue-specific and abiotic stress-responsive expression of ZmAPY genes in maize. qPCR analysis further confirmed their responsiveness to drought, heat, and cold stresses. Association analyses indicated that variations of ZmAPY5 and ZmAPY16 may regulate maize agronomic traits and drought responses. Our findings shed light on the molecular characteristics and evolutionary history of maize apyrase genes, highlighting their roles in various biological processes and stress responses. This study forms a basis for further exploration of apyrase functions in maize.