SummaryNavicular disease is characterized by a progressive degenerative alteration of the equine podotrochlea. In this study, we refined a previously identified quantitative trait locus (QTL) on horse chromosome 10 for the abnormal development of canales sesamoidales (DCS) of the navicular bone in Hanoverian warmblood horses. Genotyping was done in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The whole marker set comprised 45 markers including seven newly developed microsatellites and 13 single nucleotide polymorphisms (SNPs) within positional candidate genes. Chromosome-wide significant QTL were confirmed and refined for DCS on horse chromosome (ECA) 10 at 0.16-2.70 Mb and at 14.45-36.37 Mb. Nine microsatellites and three SNP markers reached the highest multipoint Zmeans and LOD scores at 19. Mb with genome-wide error probabilities of P < 0.05. In addition, a significant association of a SNP within VSTM1 and a significant haplotype-trait association within IRF3 could be shown. These results support a possible role of the candidate genes VSTM1 and IRF3 within the QTL on ECA10 for DCS. This study is a further step towards the identification of the genes responsible for navicular disease in Hanoverian warmblood horses.