Since the introduction of the White-Kauffmann-Le Minor (WKL) scheme for Salmonella serotyping, the nomenclature remains the most widely used for reporting the disease prevalence of Salmonella enterica across the globe. With the advent of whole genome sequencing (WGS), traditional serotyping has been increasingly replaced by in-silico methods that couple the detection of genetic variations in antigenic determinants with sequence-based typing. However, despite the integration of genomic-based typing by in-silico serotyping tools such as SeqSero2 and SISTR, in-silico serotyping in certain contexts remains ambiguous and insufficiently informative due to polyphyletic serovars. Furthermore, in spite of the widespread acknowledgement of polyphyly from genomic studies, the serotyping nomenclature remains unaltered. To prompt refinements to the Salmonella typing nomenclature for disease reporting, we herein performed a systematic characterization of putative polyphyletic serovars and the global Salmonella population structure by comparing 180,098 Salmonella genomes (representing 723 predicted serovars) from GenomeTrakr and PubMLST databases. We identified a range of core genome MLST typing thresholds that result in stable population structure, potentially suitable as the foundation of a genomic-based typing nomenclature for longitudinal surveillance. From the genomic comparisons of hundreds of predicted serovars, we demonstrated that in-silico serotyping classifications do not consistently reflect the population divergence observed at the genomic level. The organization of Salmonella subpopulations based on antigenic determinants can be confounded by homologous recombination and niche adaptation, resulting in shared classification of highly divergent genomes and misleading distinction between highly similar genomes. In consideration of the pivotal role of Salmonella serotyping, a compendium of putative polyphyletic serovars was compiled and made publicly available to provide additional context for future interpretations of in-silico serotyping results in disease surveillance settings. To refine the typing nomenclatures used in Salmonella surveillance reports, we foresee an improved typing scheme to be a hybrid that integrates both genomic and antigenic information such that the resolution from WGS is leveraged to improve the precision of subpopulation classifications while preserving the common names defined by the WKL scheme. Lastly, we stress the importance of controlled vocabulary integration for typing information in open data settings in order for the global Salmonella population dynamics to be fully trackable.